en

Qué es el análisis de datos y su importancia en el mundo digital

La sociedad en la que vivimos, constantemente conectada y en continua evolución y movimiento, genera datos a un ritmo vertiginoso y las compañías que han sabido entender el valor de traducir la información que se va dando están sacando un gran rendimiento a la data science. Desde el mundo de las finanzas al retail, la alimentación o el turismo, que entienden el valor de realizar previsiones, por ejemplo, sobre las tendencias que se están dando en el consumo para adaptar su propuesta de servicios y/o productos al target al que se dirigen. Asegúrate de que la plataforma pueda escalar con tu negocio a medida que crece tu equipo.

  • Aunque no es un requisito indispensable, para especializarse en Data Science es aconsejable haber cursado previamente estudios de Informática, Matemáticas, Dirección de empresas o Estadística.
  • Los científicos de datos pueden extraerlos de las bases de datos internas o externas, del software CRM de la empresa, de los registros del servidor web, de las redes sociales o adquirirlos de terceros de confianza.
  • Estas no solo facilitan la manipulación eficiente de datos, sino que también permiten el desarrollo de modelos avanzados que impulsan la toma de decisiones estratégicas.
  • Las soluciones de almacenamiento en la nube, como los data lakes, brindan acceso a la infraestructura de almacenamiento, que es capaz de ingerir y procesar grandes volúmenes de datos con facilidad.

Los científicos de datos colaboran en equipos con profesionales de informática, estadística y profesiones específicas como finanzas, marketing y sanidad, ya que se trata de un campo interdisciplinar. Se utiliza el procesamiento de eventos complejos, las redes neuronales, el modelado, el análisis de gráficos y los motores de recomendación de aprendizaje automático. Mediante la combinación de numerosas técnicas, bootcamp de programación tecnologías y herramientas, la ciencia de datos ayudará a extraer conclusiones perspicaces. De vuelta al ejemplo de la reserva de vuelos, el análisis prescriptivo podría examinar las campañas de marketing históricas para maximizar la ventaja del próximo pico de reservas. Un científico de datos podría proyectar los resultados de las reservas de diferentes niveles de gasto en varios canales de marketing.

La plataforma de clientes de HubSpot

Utiliza datos para comprender lo que ha sucedido antes para conformar un procedimiento que seguir. La BI está orientada a datos estáticos (inmutables) que suelen estar estructurados. Aunque la ciencia de datos usa datos descriptivos, generalmente lo hace para determinar variables predictivas, que luego se utilizan para categorizar datos o para emitir pronósticos. Los científicos de datos desempeñan un papel esencial para garantizar que las organizaciones tomen decisiones informadas.

que es la ciencia de datos

El objetivo de la ciencia de datos es extraer información y conocimientos de los datos para apoyar la toma de decisiones y resolver problemas. Emplea varias herramientas y métodos de otras disciplinas, como la informática, la estadística y el aprendizaje automático, para analizar e interpretar conjuntos de datos grandes y complicados. La ciencia de datos es un campo que utiliza métodos, procesos, algoritmos y sistemas científicos para obtener conocimientos y perspectivas a partir de datos estructurados y no estructurados.

Información sobre AWS

En este sentido, es interesante la discusión que plantea Kirk Borne, PhD, científico de datos principal de Booz Allen Hamilton, sobre cómo los científicos de datos pueden ayudar en la nueva era de datos más grandes y complejos. Se puede decir que el estadístico estadounidense John Wilder Tukey fue precursor de la ciencia de datos en los años sesenta, haciendo énfasis en la importancia de analizar datos en lugar de ensayar en modelos estadísticos. Tomando en cuenta todo lo explicado, los profesionales especializados en la ciencia de datos no solo deben tener aptitudes analíticas, sino que deben ser capaces de comunicar el contenido de la información que han procesado. Uno de los ejemplos más importantes de la ciencia de datos en la actualidad sería su uso para estudiar el virus COVID-19 y desarrollar una vacuna o un tratamiento. La ciencia de datos también incluye detección de fraude, automatización de la atención al cliente, recomendaciones de atención médica, detección de noticias falsas, sistemas de recomendación de comercio electrónico y entretenimiento, y más. Más allá de las habilidades técnicas, el rol de un Científico de Datos implica la comprensión profunda del contexto empresarial, la capacidad para interpretar datos de manera significativa y la comunicación efectiva de hallazgos.

Dado que la ciencia de datos suele utilizar grandes conjuntos de datos, es extremadamente importante contar con herramientas que se puedan escalar con el tamaño de los datos, sobre todo para proyectos con estrechos márgenes de tiempo. Las soluciones de almacenamiento en cloud, como los lagos de datos, proporcionan acceso a infraestructura de almacenamiento y son capaces de ingerir y procesar grandes volúmenes de datos con facilidad. Estos sistemas de almacenamiento aportan flexibilidad a los usuarios finales y les permiten poner en marcha grandes clústeres si es necesario. También pueden añadir nodos de cálculo incremental para acelerar los trabajos de proceso de datos, y permitir a la empresa hacer concesiones a corto plazo a cambio de mayores resultados a largo plazo.

¿Qué hacen los científicos de datos?

Esta disciplina busca recorrer amplios “lagos de datos” en busca de conexiones, conceptos, tendencias o puntos de interés. En la actualidad, casi todas las empresas afirman haber recurrido a la Data Science de una manera u otra en un momento dado. Por lo tanto, las prácticas y enfoques empleados por los profesionales pueden variar de una organización a otra. MANA Community se asoció con IBM Garage para crear una plataforma de IA para realizar minería de datos en grandes volúmenes de datos ambientales de diversos canales digitales y miles de fuentes. Estas y otras soluciones están impulsadas por SAS Viya, la plataforma de ciencia de datos de SAS líder en el mercado que se ejecuta en una arquitectura moderna, escalable y nativa de la nube. Una red neuronal es un tipo de aprendizaje automático que se inspira en el funcionamiento del cerebro humano.

que es la ciencia de datos

Esa tecnología se utiliza para asistir en la toma de decisiones de las empresas, pero permite la automatización de determinadas tareas profesionales que necesitan un modo de aprendizaje específico. No obstante, todos esos datos ofrecen oportunidades increíbles https://www.diginota.com/el-mejor-bootcamp-de-programacion-en-el-mundo-por-que-elegir-tripleten-para-entrar-en-ti/ para las empresas de todos los sectores profesionales, las instituciones de investigación o el sector público. El análisis de datos que permite extraer informaciones es el motivo por el que los datos a menudo se consideran como “el petróleo del siglo XXI”.

scroll to top scroll to top